Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tomonaga-Luttinger liquid (TLL) behavior in one-dimensional systems has been predicted and shown to occur at semiconductor-to-metal transitions within two-dimensional materials. Reports of one-dimensional defects hosting a Fermi liquid or a TLL have suggested a dependence on the underlying substrate, however, unveiling the physical details of electronic contributions from the substrate require cross-correlative investigation. Here, we study TLL formation within defectively engineered WS2atop graphene, where band structure and the atomic environment is visualized with nano angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy, and non-contact atomic force microscopy. Correlations between the local density of states and electronic band dispersion elucidated the electron transfer from graphene into a TLL hosted by one-dimensional metal (1DM) defects. It appears that the vertical heterostructure with graphene and the induced charge transfer from graphene into the 1DM is critical for the formation of a TLL.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ ) and fabricate it with scanning tunneling microscopy (STM). The Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.more » « less
-
Abstract Individual atomic defects in 2D materials impact their macroscopic functionality. Correlating the interplay is challenging, however, intelligent hyperspectral scanning tunneling spectroscopy (STS) mapping provides a feasible solution to this technically difficult and time consuming problem. Here, dense spectroscopic volume is collected autonomously via Gaussian process regression, where convolutional neural networks are used in tandem for spectral identification. Acquired data enable defect segmentation, and a workflow is provided for machine-driven decision making during experimentation with capability for user customization. We provide a means towards autonomous experimentation for the benefit of both enhanced reproducibility and user-accessibility. Hyperspectral investigations on WS2sulfur vacancy sites are explored, which is combined with local density of states confirmation on the Au{111} herringbone reconstruction. Chalcogen vacancies, pristine WS2, Au face-centered cubic, and Au hexagonal close-packed regions are examined and detected by machine learning methods to demonstrate the potential of artificial intelligence for hyperspectral STS mapping.more » « less
An official website of the United States government
